Search results for "hybrid films"

showing 2 items of 2 documents

Prussian Blue Analogues of Reduced Dimensionality

2012

Abstract: Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While molecule-based materials can combine physical and chemical properties associated with molecular-scale building blocks, their successful integration into real devices depends primarily on higher-order properties such as crystal size, shape, morphology, and organization. Herein a study of a new reduced-dimensionality system based on Prussian Blue analogues (PBAs) is presented. The system is …

LANGMUIR-BLODGETT-FILMSMaterials scienceSpin glassORDERING TEMPERATUREsingle-chain magnetsNanotechnologyiron(ii) complex02 engineering and technologyCrystal structure010402 general chemistrySINGLE-CHAIN MAGNETSlangmuir-blodgett-films01 natural sciencesThermal expansionBiomaterialsCrystalchemistry.chemical_compoundPHOTOINDUCED MAGNETIZATIONTHIN-FILMSDEGREES-Cphotoinduced magnetizationMoleculeGeneral Materials ScienceCRYSTAL-STRUCTURESThin filmPrussian bluePhysicsGeneral Chemistry021001 nanoscience & nanotechnologyIRON(II) COMPLEX0104 chemical sciencesHYBRID FILMSordering temperaturesquare grid networkChemistrychemistryFerromagnetismSQUARE GRID NETWORKthin-filmshybrid filmsdegrees-c0210 nano-technologyEngineering sciences. Technologycrystal-structuresBiotechnologySmall
researchProduct

Rapid and eco-friendly synthesis of graphene oxide-silica nanohybrids

2014

The increasing interest in Graphene oxide (GO) is due to many issues: the presence of both sp2-conjugated atoms and oxygen-containing functional groups provides a strong hydrophilicity and the possibility to further functionalize it with other molecules (i.e. π-π interactions covalent attachment etc.) [1]. Furthermore since the GO is biocompatible and noncytotoxic many studies have been recently focused on the development of GO-based nanodevices for bioimaging DNA detection drug delivery. Due to their low cytotoxicity and large internal surface area silica nanoparticles have been taken into account as promising material for biolabeling and drug loading/delivery. Particular consideration has recently been demonstrated for GO-silica composites because of the potentialities for electrical applications their chemical inertia and stability toward ions exposure. The possibility to combine the extraordinary properties of GO and silica offers several advantages for the realization of nanoprobes for biological applications and of biosensor [12]. The strategy for the fabrication of GO-nanosilica nanohybrids can be schematized as follows: (i) synthesis of GO by oxidizing graphite powder with the method described by Marcano et al. [3] (ii) Preparation of oxygen-loaded silica nanoparticles by thermal treatments in controlled atmosphere in order to induce high NIR emission at 1272 nm from high purity silica nanoparticles. (iii) preparation of GrO-silica nanohybrid films via rapid solvent casting in water. The nanohybrids were tested by XPS FTIR Raman analysis UV photoluminescence analysis TGA Zeta potential measurements electrical tests AFM and SEM. Several nanohybrids were prepared by combining two different typologies of GO and two different samples of silica.
researchProduct